A role for the locus coeruleus in the analgesic efficacy of N-acetylaspartylglutamate peptidase (GCPII) inhibitors ZJ43 and 2-PMPA
نویسندگان
چکیده
N-acetylaspartylglutamate (NAAG) is the third most prevalent and widely distributed neurotransmitter in the mammalian nervous system. NAAG activates a group II metabotropic glutamate receptor (mGluR3) and is inactivated by an extracellular enzyme, glutamate carboxypeptidase II (GCPII) in vivo. Inhibitors of this enzyme are analgesic in animal models of inflammatory, neuropathic and bone cancer pain. NAAG and GCPII are present in the locus coeruleus, a center for the descending noradrenergic inhibitory pain system. In the formalin footpad model, systemic treatment with GCPII inhibitors reduces both phases of the inflammatory pain response and increases release of spinal noradrenaline. This analgesic efficacy is blocked by systemic injection of a group II mGluR antagonist, by intrathecal (spinal) injection of an alpha 2 adrenergic receptor antagonist and by microinjection of an α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist directly into the contralateral locus coeruleus. Footpad inflammation increases release of glutamate in the contralateral locus coeruleus and systemic treatment with a GCPII inhibitor blocks this increase. Direct injection of GCPII inhibitors into the contralateral or ipsilateral locus coeruleus reduces both phases of the inflammatory pain response in a dose-dependent manner and the contralateral effect also is blocked by intrathecal injection of an alpha 2 adrenergic receptor antagonist. These data support the hypothesis that the analgesic efficacy of systemically administered GCPII inhibitors is mediated, at least in part, by the contralateral locus coeruleus via group II mGluR, AMPA and alpha 2 adrenergic receptors.
منابع مشابه
Intracerebroventricular administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in inflammatory pain
BACKGROUND The peptide neurotransmitter N-Acetylaspartylglutamate (NAAG) is the third most prevalent transmitter in the mammalian central nervous system. Local, intrathecal and systemic administration of inhibitors of enzymes that inactivate NAAG decrease responses to inflammatory pain in rat models. Consistent with NAAG's activation of group II metabotropic glutamate receptors, this analgesia ...
متن کاملEndogenous N-acetylaspartylglutamate (NAAG) inhibits synaptic plasticity/transmission in the amygdala in a mouse inflammatory pain model
BACKGROUND The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is widely expressed throughout the vertebrate nervous system, including the pain processing neuraxis. Inhibitors of NAAG peptidases are analgesic in animal models of pain. However, the brain regions involved in NAAG's analgesic action have not been rigorously defined. Group II metabotropic glutamate receptors (mGluR2/3) pl...
متن کاملNAAG peptidase inhibition in the periaqueductal gray and rostral ventromedial medulla reduces flinching in the formalin model of inflammation
BACKGROUND Metabotropic glutamate receptors (mGluRs) have been identified as significant analgesic targets. Systemic treatments with inhibitors of the enzymes that inactivate the peptide transmitter N-acetylaspartylglutamate (NAAG), an mGluR3 agonist, have an analgesia-like effect in rat models of inflammatory and neuropathic pain. The goal of this study was to begin defining locations within t...
متن کاملThe Protective Effect of Vitamin E on Locus Coeruleus in Early Model of Parkinson\'s Disease in Rat: Immunoreactivity Evidence
Background: Free radical formation and oxidative stress might play an important role in the pathogenesis of Parkinson's disease (PD). In vitro data indicate that neuromelanin (NM) pigment is formed the excess cytosolic catecholamine that is not accumulated into synaptic vesicles via the vesicular monoamine transporter 2 (VMAT2). We designed this study to investigate the neuroprotective effects ...
متن کاملStudy of interaction between opioid and ?-2 adrenergic systems in analgesic effect of oxytocin in locus coeruleus nucleus
Introduction: Oxytocin is a active neuropeptide of central nervous system. In this study the effects of naloxone (opioid receptor antagonist) and yohimbine (α-2 adrenergic receptor antagonist) on analgesic effect of oxytocin applied into the locus coeruleus (LC) nucleus were investigated. Methods: Adult male Wistar rats were used. Animals divided into different groups receiving saline, oxy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017